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Abstract. In this note a noncommutative version of Jajte's theo- 
rem on the existence of the ergodic Hilbert transform is given. As 
a noncommutative counterpart of the classical almost everywhere con- 
vergence the bundle convergence of operators in a von Neumann 
algebra and its L2-space is used. 
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1. INTRODUCTION 

Let (51, p) be a probability space. Gaposhkin showed in [I] the connec- 
tion between the Cesiro ergodic averages of a unitary operator u acting in 
L2 = L2 (51,F, p) and the spectral measure of u, in the context of almost sure 
convergence. More precisely, this theorem states that for every f E L, the limit 

exists almost everywhere if and only if 

lim E({t: 0 i It1 < 2-"1) f = 0 
n+co  

almost everywhere, where E (.) is the spectral measure of the unitary opera- 
tor u, i.e. 

R 

u = j eitE(dt). 
- R  

Ten years later Jajte pointed out in [5] the similar behaviour of the 
ergodic Hilbert transform. Namely, if u is a unitary operator and E (.) is its 
spectral measure, then for every f E L, the limit 

lim C - 
n * m O < l k l < n  k 
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exists almost everywhere if and only if 

lim [E({t: -2-" i t iO})-E({t: 0 < t < 2-"})I f = O  
n-tco 

almost everywhere. 
The above-mentioned theorems have been extended to the von Neumann 

algebra context by Hensz and Jajte in [3]. As a noncommutative counterpart 
of the classical almost everywhere convergence they introduced the so-called 
almost sure convergence. Unfortunately, because of the lack of additivity of this 
convergence, only some asymptotic formulae could be obtained (see [3], Theo- 
rems 2.2 and 3.1). Later, Hensz et al. replaced in [4] that noncommutative 
counterpart of almost everywhere convergence by the bundle convergence, 
which enjoys nice regularities, and extended Gaposhkin's theorem ([2], Theo- 
rem 1) on the convergence of Cesaro averages of a normal contraction to the 
von Neumann algebra context. 

The aim of this note is to extend Jajte's theorem about the ergodic Hilbert 
transform ( [ 5 ] ,  Theorem 3) to the above noncommutative setup and to en- 
hance Theorem 3.1 in [3] (cf. also [6]) in this way. 

2. NOTATION AND DEFINITIONS 

Let M be a a-finite von Neumann algebra with a faithful normal state @. 
In our case, the GNS representation of ( M ,  @) is faithful and normal, so 
without any loss of generality we may and do assume that M acts in its GNS 
representation Hilbert space, say H, in a standard way. In particular, we have 
H = L2 (M, @) being the completion of M under the norm x H Qi (x* x)'I2, and 
@ (x) = (x52, a),  x EM, where 52 is a cyclic and separating vector in H. The 
norm in H will be denoted by II.II, and the operator norm in M by I I - I I w .  Proj M 
denotes the lattice of all orthogonal projections in M, and p'- = 1 -p for 
p ~ P r o j  M. We put lx12 = x* x for X E  M. Finally, M +  consists of all positive 
operators from M. 

In our considerations we shall use, as a noncommutative counterpart of 
almost everywhere convergence, the bundle convergence in von Neumann al- 
gebras and in their L2-spaces. That is why we begin with the following defini- 
tions, introduced in [4]: 

DEFIN~ION 2.1. Let (Dm) be a sequence of operators in M +  such that 
00 zm=, @ (Dm)' < co. The bundle (determined by the sequence (Dm)) is the set 

DEFINITION 2.2. A sequence (x,) c M is said to be bundle convergent to 
x E M, denoted by x, x, if there exists a bundle Y(Drn, such that  PEP(^,, 
i~nplies I l(xn - x) pll -) 0. 
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DEFINITION 2.3. A sequence (5.) c H is said to be bundle convergent to 
5 E H, denoted by -% 5, if there exists a sequence (x,) c A4 bundle convergent 
in M to 0 such that ~ n * = l ~ 1 ~ n - ~ - x n ~ 1 1 2  < cu. 

The following theorem is implied by Theorem 5.4 in [4]. 

THEOREM 2.1. Let u be a unitary operator acting in H,  and let 

be its spectral representation with the spectral measure E(-) .  Let us put 

sn=: c uk for n =  1 , 2 ,  ... 
n k = ~  

Then, for each 5~ H,  the sequence (S,, 5 )  is bundle convergent if and only i f  

3. NIAIN THEOREM 

In this section we formulate and prove the main result of the paper: 

THEOREM 3.1. Let u be a unitary operator acting in H,  and let 

TC 

u = j eit E (dt) 
- R  

be its spectral representation with the spectral measure E (-). Let us put 

Then, for each ( E  H ,  the sequence (S", 5)  is bundle convergent i f  and only i f  

P r o  of. The proof of this theorem is based on the idea used in [3],  Theo- 
rem 3.1, so we keep a similar notation. Let us fix 5 E H and put 8. = f n  5 ,  
n =  1 , 2  ,..., Z ( - ) = E ( ) t .  For t ~ [ - n , n ]  and n =  l , 2  ,..., let 

sin (kt) * sin (kt)  

k = l  k = n + l  

By the equality 
t n 

= --+-sgn(t) 
k = i  2 2 
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which holds for each t ~ [ - n ,  n], we obtain 

Let us define 
X 

H 

8, = 5,. - i j (nsgn(t)- t) z (dt) 
-n 

(n = 1, 2, . . .). First, we observe that 

(3.2) Fn %o.  

We have, by (3.1), 

Thus, by orthogonality, 

where F (-) = 112 Using the estimations 

R (t)  $ C n  t , 0 < It1 < R, 

for n = 1, 2, ..., we get 

Hence 

where 

and f (0) = 0. We have 1 f (t)] $ 4 for all It1 < n. It follows that 

Consequently (see [4], Property 3 4 ,  we get (3.2). 
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Next, we define 
H ek = Ck - C2n, 

where k  = 2 ,  3, . . . and 2" < k < 2"". By Property 3.4 of [4] and the additivity 
of bundle convergence it is enough to show that 

to complete the proof. 
Writing k-2" in the form 

with cq E {0, 1) we obtain the following representation: 

where 

(q = 1, . . ., n; j = 1, . . ., zq). The inequalities 

for m > n, give the following estimations 

In particular, ~ R ~ , , , ~ ( t ) l  < C for t ~  [-IT, n]. Moreover, 

Taking a suitable partition of the interval [-n, n], we can write 

with mutually orthogonal vectors ('3 H ( p  = 1 ,  . . ., pn) such that 
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and 

for q = 1, ..., n and j = 1, ..., 2q. 
Now, we choose operators xn,, E M  and vectors 5; E H ( p  = 1, . . . , pn) such 

that 

and 

for p, r = 1, . . ., p,, p # r. We have 

where 

(3.12) 

for k = 2, 3, . . . and 2" < k < 2"". Putting, for q = 1, . . ., n and j = 1, . . ., 2q, 

we get 

q = l  

for 2" < k < 2"". Let 

Then (D,) c M +  and lykI2 < Dn for 2" < k < 2"". We shall prove that 

We have 
n 24 

@(Dn) = 2 C q2 C @(ldn,q,j12), 
q = 1  j = l  
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and 

By (3.8), we have 

so, by (3.6), (3.9), the orthogonality of the vectors [",and the estimations (3.4), 
we obtain 

Thus, by (3.5) and (3.7), 

Now, using the estimations (3.4), we shall prove (see [I]) that 

We have 
IT 

~ l ? ~ , ~ , ~  (t)12 F (dt) < C2 (22n-2q 
- n  

1 It12F(dt) 
I t IG2-n  

< c2 (22" - 2q C S 2-2k F (dt) 
k = n  2 - ( k + l ) < l t 1 < 2 - k  
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where 

I  1 F ( d t )  and I,= S F ( d t )  for k = 0, 1, . . .  
1 < It1 < n  2 - ( k + l ) < l t 1 < 2 - k  

Thus, 

We have 



The ergodic Hilbert transform 23 1 

and 
a3 n n - q - 1  co n - 2  n - k - 1  

C C q2242-2" C 221c+21,'= C 2-2n C 22k+21k C q22q 
n = l  q = l  k =  -1 n = l  l c = - 1  q = l  

= 1 I~ c 2-(n-k-l) (n-k-1)2=Cl C I,. 
k = - 1  n = k + 2  Ic= - 1 

Since 

we get (3.16). 
On the other hand, by (3.10), we have 

which ends the proof of (3.15). 
By (3.15), the sequence (Dn) determines a bundle. For each p E Y(,n, and 

2" < k < 2"" we have 

Consequently, y, 3 0, which means (see [4], Property 3.6) that 

(3.17) ykL? SO. 

Finally, we observe that 

which implies 

and 

respectively. Indeed, by (3.12) and (3.7), we have 
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Analogously, by (3.13), (3.4) and (3.9), we get 

By (3.11), (3.17), (3.18) and (3.19), we get (3.3), which completes the proof. H 

4. APPENDIX 

For the purpose of completeness of our considerations we give a sketch of 
the proof of Theorem 2.1. 

P r o  of. For fixed t E H, let us put on = Sn t. We have 

where 

and Kn(0) = 1. 
We define 

and using the inequalities 

K (t)  < c -  t - , 0 < It1 < n, 

we can show that 

f 116n1I2 < (33. 
n = l  

Consequently, we get 

Next, we define 
Ok = ok-02n, 

where k = 2, 3, ... and 2" < k < 2"+l, and we show that 
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We have 

where 
n 

A: = j (ICzn + jzn - (t) - ~ 2 "  + (j- 112" - q (t)) (dt) = S Rn,q,i (t) (dt) 
- x  -72 

for q = 1, . . ., n and j = 1, . . ., 2? As in the proof of Theorem 3.1, we can write 

where 

and I Y k 1 2  < Dn for some (D,) c M+ satisfying 

The inequalities 
I n  ( I  1 Itl < R, 

for m > n, give the following estimations: 

l n q j  I 2, ItI < ~9 

which make it possible to prove (4.1). The standard argument completes the 
proof. II 

Now, we have the clear connection between the Cesaro averages and the 
ergodic Hilbert transform (see [5], Theorem 1, and [3], Theorem 3.3): 

THEOREM 4.1. Let u be a unitary operator in H and let E (a)  be its spectral 
measure. Let 

Then, for every < E H ,  

6 - PAMS 27.2 
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$ and only $ for every ( E H, 
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