PROBABILITY
AND
MATHEMATICAL STATISTICS

Vol. 27, Fasc. 2 (2007), pp. 223-234

ON THE ERGODIC HILBERT TRANSFORM IN L,
OVER A VON NEUMANN ALGEBRA

BY

KATARZYNA KIELANOWICZ (LODZ)

Abstract. In this note a noncommutative version of Jajte’s theo-
rem on the existence of the ergodic Hilbert transform is given. As
a noncommutative counterpart of the classical almost everywhere con-
vergence the bundle convergence of operators in a von Neumann
algebra and its L,-space is used.
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1. INTRODUCTION

Let (2, &, p) be a probability space. Gaposhkin showed in [1] the connec-
tion between the Cesaro ergodic averages of a unitary operator u acting in
L, = L,(Q, %, p) and the spectral measure of u, in the context of almost sure
convergence. More precisely, this theorem states that for every f e L, the limit

n—1

(1.1) lim= Y utf

nro M=o

exists almost everywhere if and only if
ImE({t:0<f|<27")f=0

almost everywhere, where E() is the spectral measure of the unitary opera-
tor u, ie. .
u= [ " E(dr).
-7
Ten years later Jajte pointed out in [5] the similar behaviour of the
ergodic Hilbert transform. Namely, if u is a unitary operator and E() is its
spectral measure, then for every felL, the limit

(1.2) lim Y “f

n= 0 g < |k <n k
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exists almost everywhere if and only if
lm[E({t: —27"<t<O0)—E({t: 0<t<27"})]f=0

n—* oo
almost everywhere.

The above-mentioned theorems have been extended to the von Neumann
algebra context by Hensz and Jajte in [3]. As a noncommutative counterpart
of the classical almost everywhere convergence they introduced the so-called
almost sure convergence. Unfortunately, because of the lack of additivity of this
convergence, only some asymptotic formulae could be obtained (see [3], Theo-
rems 2.2 and 3.1). Later, Hensz et al. replaced in [4] that noncommutative
counterpart of almost everywhere convergence by the bundle convergence,
which enjoys nice regularities, and extended Gaposhkin’s theorem ([2], Theo-
rem 1) on the convergence of Cesaro averages of a normal contraction to the
von Neumann algebra context.

The aim of this note is to extend Jajte’s theorem about the ergodic Hilbert
transform ([S], Theorem 3) to the above noncommutative setup and to en-
hance Theorem 3.1 in [3] (cf. also [6]) in this way.

2. NOTATION AND DEFINITIONS

Let M be a o-finite von Neumann algebra with a faithful normal state @.
In our case, the GNS representation of (M, &) is faithful and normal, so
without any loss of generality we may and do assume that M acts in its GNS
representation Hilbert space, say H, in a standard way. In particular, we have
H = L, (M, ®) being the completion of M under the norm x+ @ (x* x)'/2, and
?(x) = (xQ, Q), xe M, where Q is a cyclic and separating vector in H. The
norm in H will be denoted by |||, and the operator norm in M by [[||.,. ProjM
denotes the lattice of all orthogonal projections in M, and p' = 1—p for
peProjM. We put |x|?> = x* x for xe M. Finally, M* consists of all positive
operators from M.

In our considerations we shall use, as a noncommutative counterpart of
almost everywhere convergence, the bundle convergence in von Neumann al-
gebras and in their L,-spaces. That is why we begin with the following defini-
tions, introduced in [4]:

DEerINITION 2.1, Let (D,) be a sequence of operators in M™* such that
Z:::l ®(D,,) < co. The bundle (determined by the sequence (D,,)) is the set

.@(Dm) = {pGPI'OjMZ sup”p(z Dk)p”oo < oo and ”popr m->o 0}
m k=1

DeFINITION 2.2. A sequence (x,) = M is said to be bundle convergent to

xe M, denoted by x, BM, &, if there exists a bundle 2, such that pe 2, ,
implies ||(x,—X) plle — O.
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DermNITION 2.3. A sequence (&,) = H is said to be bundle convergent to

e H, denoted by &, 2, ¢, if there exists a sequence (x,) = M bundle convergent
in M to O such that Z:lelé,,—f—x,, Q)% < o0.

The following theorem is implied by Theorem 5.4 in [4].

THEOREM 2.1. Let u be a unitary operator acting in H, and let
u= | &"E(d)

be its spectral representation with the spectral measure E(). Let us put
1n—1
Sp==>u" forn=12,...
Rr=o
Then, for each éeH, the sequence (S, &) is bundle convergent if and only if

E{t:0< i <27")eL0.

3. MAIN THEOREM

In this section we formulate and prove the main result of the paper:
THEOREM 3.1. Let u be a unitary operator acting in H, and let
" 3
u= [ "E(dt)
-
be its spectral representation with the spectral measure E(). Let us put

Si= Y

O<lkl<n

for n=1,2,...

| S

Then, for each EeH, the sequence (S, &) is bundle convergent if and only if
E({t: —27"<t<O)E—E({t: 0 <t <27")ED0.

Proof. The proof of this theorem is based on the idea used in [3], Theo-
rem 3.1, so we keep a similar notation. Let us fix £ H and put 6, = S, &,
n=1,2,..., Z()=E()¢ For te[—n,n] and n=1,2,..., let

" sin (kt) > sk
Ln(t) — Z ”"T(—a Kn(t) = Z IE )
& k=n+1
By the equality
© gin(k
sin (kt) _ __£+Esgn(t)

k=1 k 2 2
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which holds for each te[—m, ], we obtain

k3

Gl G,=2i j L,(O)Z @)= —2i | <I€,,(t)+~;——gsgn(t)>2(dt).

Let us define
5y = Gpn—i | (msgn(t)—1) Z(do)

—in(Z({t: —27"<t<0P—Z({t: 0 <t <27"})
(mn=1,2,..). First, we observe that
(3.2) 5, 20.
We have, by (3.1),

5,=—2i | <I€2n(t)——gsgn(t)>Z(dt)—2i [ Ram(®Z ().

[tfl<2-n 2 n<|t|<n
Thus, by orthogonality,
2

F@A)+4 | |R.m()*F(d),

2-n<t|<n

607 =4 |

t|€2-n

where F () = ||Z()]|>. Using the estimations

Ron()—5sgn ()

<Cnltl, <,

R, (-3 s8n(0)

K, <Cn '™, O<|f<m,
forn=1,2,..., we get

157 <C( | 2*PF@)+ | 2772 F(dy)).

LEY A4 2-n<|t|<n

Hence
Y GIP < C | fO)F (@),
n=1 -

where

f@= 3 2%+ > 277 o<[i<m,

{m:2mt] <1} {n:2nft] > 1}

and f(0)=0. We have |f(¢)] <% for all |f| <= It follows that

S 617 < co.

Consequently (see [4], Property 3.5), we get (3.2).
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Next, we define
Hk = &k - 527\,

where k = 2, 3, ... and 2" < k < 2"*1. By Property 3.4 of [4] and the additivity
of bundle convergence it is enough to show that

(3.3) 0,20
to complete the proof.
Writing k—2" in the form
k—=2"= ) g2"¢

with ¢,e€{0, 1} we obtain the following representation:

o~ n ~
— J
= Z &g A5,
q=1
where

~£= —2i j (K2”+12" a(t)— K2n+(1 Han-a(t) Z (dt) = f nqj(t)Z(dt)

—n -7

g=1,...,n;,j=1,...,29. The inequalities
o Con—n)ld,  mll<m,
|Km(t)_Kn(t)| < C(m_n)n_la |t| < ,
Cn 1)1, O<tl<n

for m > n, give the following estimations

C2" 1t ||
(3.4) [Rp g0 < C274, 2Tr <t 270D,
C27"e™t, 27D < <.

In particular, |R,, ;)| < C for te[—mn, n]. Moreover,

(3.5) 1A% = I IRy g, (0 F (d1).

14

Taking a suitable partition of the interval [—m, n], we can write

Pn
(3.6) =Mt Y R ()G

r=1

with mutually orthogonal vectors {,eH (p =1, ..., p,) such that

Z IGI1P = F ([ —m, n]) = [III%,
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and
(3.7) > <27"n=>

forg=1,...,nand j=1,...,2%
Now, we choose operators x, ,€ M and vectors {eH (p =1, ..., p,) such
that

(3.8) (=& +x,,Q,
(3.9) &l <27"n"%p, 3,
and
(3.10) |D (3%, X )| < 27"n"3p, 3
for p,r=1,..., ps, p #r. We have
(3.11) O = M+ &+ Q,
where
(3.12) N = Z Eq”£q9
g=1
n DPn -
(3.13) Se= 2 & 2, Rug, ()5,
qg=1 r=1
n DPn ~
(3.14) Ve= ), & 2, Rugj, (t5) Xup
g=1 p=1

fork=2,3,...and 2" < k < 2"*!, Putting,forq=1,...,nandj=1,..., 2%

Pn
dng,j = Z Ry0,i (85) Xn,ps
p=1
we get
n
|yd® <2 ), % ldy g,
g=1
for 2" <k <2"t1 Let

n 24
D,=2Y @Y 1 (m=1,2,..).
qg=1

i=1

Then (D,) = M* and |y*> < D, for 2" <k <2""1. We shall prove that

(3.15) f & (D,) < .

n=1

We have

n 249

@(Dn) =2 z q2 '21 Q(ldn,q,jl2)9

=1 j
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and
Pn - Pn — o~
P (ldn,q,jlz) = Z IRn,q,j (t';z)lz P (Ixn,plz) + z Rn,q,j (t;;) Rn,q,j (t:l) @ (xr)r,p xn,r)
=t it
= A”:']sj + Bnrq’j'

By (3.8), we have
P (1,513 = [I%,, UI* < 202+ 211G,

so, by (3.6), (3.9), the orthogonality of the vectors (}, and the estimations (3.4),
we obtain

Angj <2 Z Ry, G (IS +11E511%)

= 2|4} —ni]I* +2 Z R s G I < 2114 —ni)1> +2C2 Z lIs[s

r=1 p=1
< 4|41+ 4|m)>+2C>27"n 3.
Thus, by (3.5) and (3.7),

> 3 Y Ay

n=1¢g=1 ji=1

['s) n 24

<4 Z Z 2 4P +4 21 Zlq Z llill? +2C> 21 Z q* Z 2™
n=1 i=1 n=1laq j=1 n=1g¢=1 j=1
i Z i I |Ryq,; @) F (dr)+4 Z n~2+2C? z n2,
n=1gqg=1 =1-n = n=1

Now, using the estimations (3.4), we shall prove (see [1]) that

oo} n 29 ¢
(3.16) Y, Y * Y, [ IR @ F(d) < oo.
n=1g=1 j=1-=n
We have
[ IR, ;0P Fd)<C2(2>"2 | |t F(dt)
- [tj<2-n
+27% ] F@)+2"> | |4 2F(d)
27n<t|€2 - a) 2~ <n
<ererey | 27HE(d
k=n2-Gk+D<|f]g2-k
n—1
+27% ) J F (dt)

k=n—q2 @+ <jfjg2k
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n—qg—1

+27 Y | 22k 2Fdn+272 [ F(dp)
k=0 2-(k+D<|t|g2k 1<|tl<sn
-1 n—q—1
C (22n 2q22 Zch +2 2q 2 Ik+2 2n Z 22k+21)
=n k=n—gq k=-1
where
I.y= | F@y and I,= f F(dt) for k=0,1, ...
1<|t]<n 27 kF D <t g2k
Thus,
0 n 29 ¢ o] n
IIDIEDY II RugjOPFA) < C* Y ) 42 Z g Y 27,
n=1¢g=1 j=1 - n=14g=1 j=1 k=n
n—g—1
+CZZ Zq 22 2q Z Ilc+CZZ Zq 22 2n Z 22k+21k
n=1¢g=1 j=1 k=n—gq n=14¢g=1 ji=1 k=-—1
© © n n—1
=C?Y Zq 22" ‘122 *n+cCry Y g*27 Yy I,
n=1¢qg=1 k=n n=1q=1 k=n—gq
e} n n—q—1
+C2 z 2 q22q2—2n Z 22k+21/¢-
n=1gqg=1 k=—-1
We have

z Zq22n2 quAZkII Z Zq22n2 422 2k1k

n=1g=1 q=1n=q

<Y @2IY Y 2= (Y P27 (F 2 Y 2
g=1 n=1 k=n g=1 k=n

') 0 =] k ©
= Cl Z 22)1 Z 2—2ka = Cl Z 2—2ka Z 22’1 = C2 Z Ik’
k=1

n=1 k=n k=1 n=1
© n o n—1 w n—1
Y ety L=Y YL Y #20< Y YL Y @2
n=1¢g=1 k=n—gq n=1k=0 g=n—k n=1k=0 g=n—k
o n—1
SO Y Y kP2 R = Y L, Y (kP20
n=1k=0 k=0 n=k+1

= C1 ‘Z Ik Z n22_" = Cz Z Ik,
k=0 n=1 k=0
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and
Y] n n—q—1 ) n—2 n—k—1
z Z q22q2—2n Z 22k+ZI — Z 2—2n Z 22k+2] Z q 2q
n=1¢g=1 k=—-1 n=1 k=—1 q=
-2 —k-
Z 2 n Z 2k+1I n k 1)2 Z 2q-(n~k~—1)
n=1 k=-1 g=1
<Y 2 zzk“[(nk 1)2221
n=1 k=—1 Jj=
YL Y 270k 0G_k—12=C, ¥ I.
k=-1 n=k+2 k=-1
Since

i L= [ F(d< oo

k=1 lt<n
we get (3.16).
On the other hand, by (3.10), we have

0 n 249 © n s}
Z Z qZZ IBn,q,j] < CZ z Z q22q2—nn—5pn—1< C2 Z n—Z’

n=1g¢g=1 j=1 n=1g=1 n=1

which ends the proof of (3.15).
By (3.15), the sequence (D,) determines a bundle. For each pe 2, and
2" < k< 2" we have

1 pll% = P19 Pllw < IPDyplle =0 as k— co.
Consequently, y, 22 0, which means (see [4], Property 3.6) that
(3.17) 125 0.

Finally, we observe that

2l <oo and Y IE1® < oo,
k=2

k=2
which implies

(3.18) e >0
and
(3.19) &0,

respectively. Indeed, by (3.12) and (3.7), we have

0 2n+1 1

oo 2n+l1—1 n 0
Z llmadl* = X Z lndl* < X 3 n® 3 lmfell> < X n72
= = n=1

n=1 k= n=1 k=271 g=1
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Analogously, by (3.13), (3.4) and (3.9), we get

w 2nti-o1q oo 2ntl—1

SIElR =3 Y 1EP<Y Y 2 Y |Y R el
k=2

n=1 k=2n n=1 k=2n g=1 p=1
n
<Y X Y e Y IR, @) I
Dn

n’ Y p yIGIP<C? Y nm
q=1 n=1

r=1

By (3.11), (3.17), (3.18) and (3.19), we get (3.3), which completes the proof. =

4. APPENDIX

For the purpose of completeness of our considerations we give a sketch of

the proof of Theorem 2.1.
Proof. For fixed {eH, let us put g, =S,£ We have

Op = _"E K, (t)Z(dt)a

-n

where
eint__
K (t)= —— 0<|t| €m,
n(t) n(elt—l)’ < | | TC
and K,(0) = 1.
We define

by = 0an—Z({t: 11l <277,
and using the inequalities
K. < Cn7td™t, O0<ld<m,
IK,(@)—1 < Cnlt], |d<m,

we can show that
Y 18,1* < .
=1

Consequently, we get
5,2 0.

Next, we define
Or = 0k~ 02,
where k=2,3,... and 2" <k <2"*! and we show that

0,2 0.
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We have

n

Qk = Z Sq A‘(Ilq,
q=1
where

A= T (Kans s Konig s (0) 20 = [ Ry (0200

forg=1,...,nandj=1,..., 2% As in the proof of Theorem 3.1, we can write

O = M+ &+ v 2,
where

Yol <o, Y &P < oo,
k=2 k=2
and |y? < D, for some (D,) = M™* satisfying

4.1) ‘ Y. @(D,) < 0.
n=1
The inequalities
K.@®l <1, l<m,

C(m—n)lt, mlt| < m,
K, ()= K, (0] < Cm—m)n™', |t <m,
Cn )Y, 0<lf|<m,

for m > n, give the following estimations:

IRy, g, <2, <,

C2" 1), o2,
IRy (0] << C274, 27 <t <279,
C27"d™t, 2709 < < m,

which make it possible to prove (4.1). The standard argument completes the
proof. m

Now, we have the clear connection between the Cesaro averages and the
ergodic Hilbert transform (see [5], Theorem 1, and [3], Theorem 3.3):

THEOREM 4.1. Let u be a unitary operator in H and let E(°) be its spectral
measure. Let

a=i } (msgn (t)—t) E (dt).

-n

Then, for every &€ H,
ey
2 7_)‘16

o<|k|<n

6 — PAMS 272
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if and only if, for every £€H,

1n~1 i b

k=0
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